CD-MAKE 2018: Cross Domain Conference for Machine Learning and Knowledge Extraction

Website der Veranstaltung

Datum und Uhrzeit

27.08.2018, 09:00 - 30.08.2018, 17:00
Im Kalender speichern


Hamburg, Deutschland


The International Cross Domain Conference for Machine Learning & Knowledge Extraction CD-MAKE

is a joint effort of IFIP TC 5 (Information Technology Applictions), TC 12 (Artificial Intelligence), IFIP WG 8.4 (E-Business: Multi-disciplinary research and practice), IFIP WG 8.9 (Enterprise Information Systems) and IFIP WG 12.9 (Computational Intelligence) and is held in conjunction with the International Conference on Availability, Reliability and Security (ARES).

CD stands for Cross-Domain and means the integration and appraisal of different fields and application domains (e.g. Health, Industry 4.0, etc.) to provide an atmosphere to foster different perspectives and opinions. The conference is dedicated to offer an international platform for novel ideas and a fresh look on the methodologies to put crazy ideas into Business for the benefit of the human. Serendipity is a desired effect, and shall cross-fertilize methodologies and transfer of algorithmic developments.

MAKE stands for MAchine Learning & Knowledge Extraction.

Machine learning deals with understanding intelligence for the design and development of algorithms that can learn from data and improve over time. The original definition was “the artificial generation of knowledge from experience”. The challenge is to discover relevant structural patterns and/or temporal patterns (“knowledge”) in such data, which are often hidden and not accessible to a human. Today, machine learning is the fastest growing technical field, having many application domains, e.g. health, Industry 4.0, recommender systems, speech recognition, autonomous driving, etc. The challenge is in decision making under uncertainty, and probabilistic inference enormously influenced artificial intelligence and statistical learning. The inverse probability allows to infer unknowns, learn from data and make predictions to support decision making. Whether in social networks, recommender systems, health or Industry 4.0 applications, the increasingly complex data sets require efficient, useful and useable solutions for knowledge discovery and knowledge extraction.

A synergistic combination of methodologies and approaches of two domains offer ideal conditions towards unraveling these challenges and to foster new, efficient and user-friendly machine learning algorithms and knowledge extraction tools: Human-Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), aiming at augmenting human intelligence with computational intelligence and vice versa.


Andreas Holzinger, SBA Research

Nachricht senden